ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks
نویسندگان
چکیده
Abstract Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection. Existing approaches have difficulties with three major issues: sparsity nonlinearity capturing, residual modeling, network smoothing. We propose Residual Graph Convolutional Network (ResGCN), an attention-based deep modeling approach that can tackle these GCN allows to capture nonlinearity, utilizing a neural direct ing from input, residual-based attention mechanism reduces adverse effect prevents over-smoothing. Extensive experiments on several demonstrate effectiveness ResGCN anomalies.
منابع مشابه
Radar: Residual Analysis for Anomaly Detection in Attributed Networks
Attributed networks are pervasive in different domains, ranging from social networks, gene regulatory networks to financial transaction networks. This kind of rich network representation presents challenges for anomaly detection due to the heterogeneity of two data representations. A vast majority of existing algorithms assume certain properties of anomalies are given a prior. Since various typ...
متن کاملAnomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS
In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...
متن کاملAccelerated Local Anomaly Detection via Resolving Attributed Networks
Attributed networks, in which network connectivity and node attributes are available, have been increasingly used to model real-world information systems, such as social media and e-commerce platforms. While outlier detection has been extensively studied to identify anomalies that deviate from certain chosen background, existing algorithms cannot be directly applied on attributed networks due t...
متن کاملEfficient Anomaly Detection in Dynamic, Attributed Graphs
When working with large-scale network data, the interconnected entities often have additional descriptive information. This additional metadata may provide insight that can be exploited for detection of anomalous events. In this paper, we use a generalized linear model for random attributed graphs to model connection probabilities using vertex metadata. For a class of such models, we show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2021
ISSN: ['0885-6125', '1573-0565']
DOI: https://doi.org/10.1007/s10994-021-06044-0